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Isotropic mixing transfer functions (T,) in three-spin systems reduce to a compact form. As discussed below, these situatiol
typical of amino acids have been analyzed in order to develop  correspond to commonly observed scenarios in amino acids. Fi
simple rules for predicting transfer maxima/minima. For certain  thege topologies, transfer maxima and corresponding mixin
topologies, the intrinsically complex expressions describing the times can be predicted precisely. We then go on to show that eve
transfer functions reduce to compact forms which are easy to for other three-spin topologies, which dwt belong to such
interpret and analyze. For other topologies where compactification “compact’ categories considere,\ble simplication is possible if we

is not possible, an analysis of the component functions of the Ty, I h f . f verT her th h
reveals that only one or two components contribute significantly to analyze thecomponenfunctions of a giveriy, rather than the

the overall profile of the transfer function. As a result, simple rules ~ function as a whole. As a result, mixing times corresponding tc
of the thumb may be devised for reasonably accurate prediction of ~ transfer maxima/minima (in other words, the mixing tiprefile)
mixing times corresponding to local and global transfer maxima/ ~ can still be predicted with a reasonable degree of accuracy, whic
minima, thereby facilitating mixing time optimization in TOCSY is important from a practical standpoint.

experiments.  © 2000 Academic Press

ISOTROPIC MIXING IN A THREE-SPIN SYSTEM

INTRODUCTION For an arbitrary spin systeml{, |,, |3}, the isotropic

- . o ) o Hamiltonian is
The description of isotropic mixingl} in multispin systems

is essential for understanding and optimizing TOCSY 2 3
experiments. Unlike pulsed-free-precession experiments, ana- H=27 > Jul 1. [1]
lytical descriptions of multispin coupling topologies are pos- k<l

sible only for very special situation$€10 and require nu-
merical simulations in most casek1(17. Excellent analysis Using the Liouville equation for the density operatey the
of isotropic mixing has appeared in Ref8) énd @). time derivative for the expectation value of an oper#@anay
Recently, Glaser and co-workers have derived analytical ébe derived as
pressions for isotropic mixing transfer functiofig in a general . .
three-spin (AMX) system1@). It is obvious from the results that, o = —i[H, o] [2]
except for very special cases, tiig are complicated sinusoidal (A) = Tr(Ao) [3]
functions of all relevant scalar couplings and the mixing time. . )
The rather complex nature of the transfer functions tends to (A) = —iTr{A[H, o]}. [4]
reduce the utility of analytical expressions for predicting trans-
fer maxima/minima, which is necessary for optimizing th&/sing the property Tr[B, C]} = TH{[A, B]C}, we have
mixing time in TOCSY experiments. Also, the complexity of . )
the functions reveals very little insight into the dynamics of (A) = —iTr{[A, H]a} [5]
magnetization transfer in isotropic mixing. Any possibility of = —i([A, H]). [6]
reducing these expressions to simpler forms or extracting their
“key ingredients” to enhance their utility is always desirableUsing Eqg. [6], the complete set of coupled differential equa-
In this paper, first we derive expressions for transfer functiotisns maybe written down for an appropriatedimensional
in a general three-spin system using the relatively simple Liouvilgerator basi®A = {A}, k = 1, n. An elementA, of this
space framework, which is usually found in amino acid spisasis set is transformed by the commutatay,[H] into a
systems. Then, we consider topologies for which the expressitingar combination of the basis operators:
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Therefore, we may write Eq. [6] in matrix form,

dA RA
H——I .

(8]

The isotropic Hamiltonian preserves coherence order. For a
three-spin system, the following 15 normalized operatbys:
S. Q. 21,8, 21,S,, 25,Q,, 2S,Q,, 21,Q., 21.Q,, 4,8Q,,
41,S,Q,, 4S1,Q,, 45,1,Q,, 4Q,1,S,, and 4,1,S, represent
an appropriate Liouville subspace. Differential equations can

be written to describe the evolution of each of these operatorsinterestingly, both sets of equations are amenable to analy
However, a suitable linear combination of these basis operat@®al solutions using standard methods, such as Laplace tran
allows the set of 15 coupled differential equations to be parfrms or matrix diagonalization. We found the Laplace trans-

A~ =(LS8Q) — (LSQ,)

B~ =(S1,Q)) — (S84.Q)
C™ =(Q,S) —(Qd:S)
IS™ =(1,S) +(1.S)
SQ"=(SQ) +(SQ)
1Q" = (1,Q) +(1.Qy).

[17]
(18]
[19]
[20]
[21]
(22]

tioned into two sets of 9 and 6 equations each. The matfirm method more easy to implement Btathematicaversion

equation for the nine-dimensional Liouville subspace is

2.2. While the procedure is standard textbook material, it i

(Lo = (S0 6 0 © —2j1p J23 —J13 0

(S9 —(Qw 0 0 0 j12 223 J13 0

<|x> - <Qx> 0 0 0 j12 _j23 _2j13 0

d IS 2j., O 0 0 0 0 0
a SQ =mxl O 2]23 0 0 0 0 _.j12
1Q 0 0 243 0 0 0 12

A-B 0 0 0 _j23_j13 2j12_j13 j23_ 2j12 0
B-C 0 0 0 223_j13 _j12_j13 j12_2j23 0
A-C 0 0 0 j23_2j13 j12_2j13 _j12_j23 0

0 0
0 0
0 0
_j 23 j13
0 i
J23 0
0 0
0 0
0 0

Ly — (S
(So —(Qu
<|x> - <Qx>
IS

sQ |,
1Q

[9]

> W >
O0Ow

wherej 1,, j1; andj,; are the coupling constants between I, Sutlined below for completeness. Taking Laplace transform:
on both sides of Eq. [6] we have

I, Q; S, Q, respectively, and

A=(LSQ) + (LSQ,) (10]
B = (Sd,Qy) + (Sd.Q) [11]
C=(Q,S) +(Qd.S) (12]

[23], we have

IS=(1,8) — (I.S) [13]
SQ=(S§Q» — (SQy [14]
IQ = <|sz> - <|zQy>r [15]

whereas the matrix equation for the six-dimensional subspacensve

SiA - A(O) = _iRgA,

(SE + iIR)¥£, = A(0),

(23]

& . being the Laplace transform &. After rearranging Eq.

(24]

whereE is the identity operator. Denotind = sk + IR, we

IS* 0 0 0 —J13
SQ* 0 0 0 —J12
dliQ*|_ 0 0 0 ji2 T J1s
dat| A~ |~ 7 Jia J12 J12 = J1s 0
B~ J23 —j12 = Jos J12 0
c- _j23_j13 j23 j13 0

_j23
j12 + j23
_j12
0
0
0

j23 + j13
_j23
_j 13
0
0
0

IS*
SQ"
1Q*
A_ 1
5
o

[16]
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TABLE 1
Expressions of Transfer Functions for Isotropic Mixing in a General Three-Spin System

71 (j12+2j23+j13)2 (j137j12)2 2D7j12+2j237j13 2D+j1272j23+j13
(THyy = 3 + 1802 + 6D2 COSAt + 9D COSA,t + 9D COS A5t
_1 (j12+j23_2]13)'(]12_2j23+j13) (jlz_jza)'(jla_jlz) 212~ 23— jis— D —2j1+ jaz+jis— D
(T, = 3 + 18D2 + 6D2 COSA,t + T, S— COSA,t + 9D COS A5t
1 (Jaat 23+ J1g) " (=21 + Jos+113) | (J23— J13) * (13— J12) —j12—Jaat 2j13— D izt 23— 2j13— D
(Ths = 3 + 18D2 + 6D2 COSA,t + ) COSA,t + o COS At
Note. d= (ju + jos + jua); D = (j32 + i3 + jfs = (Juzfzs + J2sfis + j1219)Y% Ay = 27D; A, = w(d — D); A3 = =(d + D).
$a=UTA(0) [25] f(tm) = &+ cog2my;7y,), [29]
and, consequently, whereN = 1 and 3 for two- and three-spin systems, respec:
tively, andy; are derived from differences of eigenvaluesiof
A(t) = VA(0) [26] The numbemN grows rapidly with the number of spins in the

V=9¢1lyLl [27] netv_vork (e.g.,N = 12 for a four-spin syster_n)l@). _
SinceT,, is a superposition of several trigonometric func
s, it is not trivial to calculate maxima and minima even if
he a; and v; are known. However, for certain spin topol
pies, the individual function§ seldom contribute equally to

Here we present results obtained for the usually encounteﬁﬁﬂ
initial condition where the magnetization resides in-phase

one of the spins. This results in only the nine—dimension% which then becomes far more tractable for analvsis
subspace being relevant for the solutions. The expressions 6& S . ysIS.
rom Eq. [29], the vicinal transfer functioh,, for a three-

transfer functions pertaining to in-phase and two-spin anti- . .

phase operators are listed in Tables 1 and 2, respectively. Us?l%n system may be written as

accepted conventions, we use the symipto denote thd& —

| transfer function which, in the Liouville space formalism, TioTm) = @0 + fi(7) + fo7) + fo(7). [30]
corresponds to the value @fA)(t) for the initial condition

(A)(0) = 1, others zero. From the expression Tqr, other Based on the results of Table 1 and with as defined above,

transfer functions (e.gTi,) may be obtained by simple per the coefficientsa; and functions; are
mutation of the spin identities.

The three-spin topology found typically in biomolecules B _ _ )
consists of two vicinal and one geminal coupling (Fig. 1), 2~ 1/3+ (vi+ v, — 29)(vy — 2v, + g)/(18D%)  [31]
usually anH,—H,,—H,, system in Phe, Tyr, Trp, His, Asp, f, = a,-co92#Dr,,) [32]
Asn, Cys, and Ser. In this work, we refer to the vicidg), , as

Vi (j1) and v, (j5), respectively, and the gemindl,, fo=a,- cogm(d — D)7yl [33]
coupling asg (jzs), with {v, v,} = [g|. The validity of the ¢ — 4 . codm(d + D)7, [34]
conclusions made in this paper has been tested fer {/,,

V,} = 15 Hz and—16 < g < —12, which are the usually ~(vi=v))(g— vy

observed ranges of these couplings in amino acafs-23. &= 6D? [35]

For the simulations shown in the paper, we have assumed a
(2vi—v,—g—D)

value of —15 Hz forg. Finally, we have concentrated only on a, = [36]
“cross-peak intensities,” i.eT,,, k # I. 9D
—(2v;—v,—g+D)
ANALYSIS OF TOPOLOGIES YIELDING az = 9D [37]
COMPACT SOLUTIONS
d=g+v,+v, [38]
In general, the total transfer functidin,(r,) for an n-spin
system is given by4) D=[g*+Vvi+vi—(gvi+gvy+viv)]¥2 [39]
N T,; andT,; are obtained easily from Eqgs. [31]-[39], by appro
Tu(to) = @+ >, fi(1y) [28] priately permuting the identities of the spins. Two situations

j=1 whereT,, takes a simple form are the following.
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TABLE 2
Expressions for Transfer Coefficients for Transfer from I, — Different Antiphase Terms
for Isotropic Mixing in a General Three-Spin System

((J12 = J1a)SIN Ay + (=2 + Jas + D)SIN A, + (12— oz + D)sin A3)

2,8) = ~(21.8) = 5
j12 = J13) " (SIN Ay + SIN A, — SiNA
(25Q) = —(25Q,) = (Ji2—J1a) " ( 61D 2 3)
21,0) = (21,9, = ((Jiz—jaSiNAy + (joz — j13+(|33|3)5in A2+ (—j2s + j1a + D)sin Ay)
_ _ (j12_2j23+j13)2 (j13_j12)2 (2D_j12+2j23_j13) (2D+j12_2j23+j13)
(L,SQ) =(LS§Qy) = — 18D2 — 6D2 COSA; + 18D COSA, + 18D COSAj

(84:Q2) = (Sd,Qp

(12— 2jas+ jag) * (—j12 = jas + 2j1a) N (Joz =112 " (J13 = |12 COSAs + (2j12= 23— 13— D) COSA, + (=2j12+ ]z +]13— D)
- 18D? 6D* ' 18D 2 18D

COSA;

(Q1,S) =(Q,l,S)
7(2j127j237j13).(j1272j23+j13) (j127j13).(j237j13) (7j127j23+2j137D) (j12+j2372j137D)
- 18D2 * 6D2 COSA, + 18D COSA, + 18D

COSAg

Note. d D, A, A,, andA; are as defined for Table 1.

@ v,=v,=v 12, g = —=15) or (v, = 6, v, = 9, g = —15) (0.

This has been dealt with in detail by Glasé} &nd corre- Cpn&dermg the situation wherkis exactly zero, the expres-
sions forT,, andT,; become

sponds to gauche—gauche or rotationally averaged conforma-

tions in amino acid side chain$,, = T,; takes the form
1 va(vit+ vy (2vy+ Vo) (Vo — Vy)

2 Te=37 opz * 6D
T,=Ti3= 9 [1— 2 cog3mvt)]. [40] )
X cos 2Dt — 9 cos Dt [41]
As noted by Glaser9], the transfer is independent af.
Transfer maxima [ = T = 33%) appear at odd multiples _— 1 ovi(vatvy) (2 + Vi)V — Vo)
of t = 1/(3v). B3 2D? 6D?
~ <1, i ~ — 2
(b) d~0,0ordiD<1,ie,qg (Vi + Vvy) % cos 27Dt — 5 cos 7Dt [42]
This is not an uncommon situation in amino acids, typical
examples being thkans-gauche conformatiorvg = 3, v, = D =[3(vZ+ v+ vv,)]Y2 [43]

By setting the time derivatives to zero, it is easily shown that
for z = (v./v,) < (1 + V3), extrema correspond to

SinaDTR™=0 z=Vy/v, < (1+ |3). [44]

The interesting point to note here is that for béthandT,;, peak
(maxima or in some cases local minima) appear at the sarr
mixing time (1D), with identical efficiencies of 44.4%, regardless
of the relative magnitudes of, andv,. As a result, both of the
cross peaks can be maximized at the same mixing flipealso
has the same value (44.4%) tat= 1/D, although it does not

1 correspond to a maximum. This is illustrated in Fig. 2a, which

FIG. 1. A general three-spin system typically seen in biomolecules. Hef10WS the three transfer functions, assuming= 9.0 andv, =
v, andv, are vicinal andy is the geminal coupling constant. 6.0 Hz. Ty, associated with the larger coupling, builds up
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FIG. 2. Mixing time dependence of transfer functions at different valueg @ndv,: () v; = 9.0 Hz andv, = 6.0 Hz, (b)v, = 9.0 Hz andv, = 4.0 Hz,
(c) v; = 12.0 Hz andv, = 3.0 Hz, (d)v, = 12.0 Hz andv, = 3.5 Hz. The value ofj is —15 Hz in all cases.

rapidly in the beginning, but the slower functidi, catches up  Forz = (1 + V/3), the condition for extrema is given by
steeply in the vicinity ot = 1/D. In situations wherel # O but
d < D, the maxima ofl;, andT,; are marginally offset from each 2 2
) : o Vi+Vs+ v, —
other, but the point of intersection lies very close to the larger/ cos wD " = z=(1+ 3). [45]
smaller of the two peaks, as shown in Fig. 2b< 9.0,v, = 4.0, (V2 = Vi) (2vy + Vo)
d/D = —0.09). In addition;T,; develops multiple maxima, which
exceed that off;, and Ty,. An example of the mixing time profile of a topology in this
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category Y, = 12,v, = 3) is shown in Fig. 2cT,, displays in-phase, i.e., when maxima d&f coincide with that off;.
multiple maxima at Whenf, andf; are anti-phase, i.e., & maximum coincides
with an f; minimum, the situation corresponds to a global
vZ+ Vit minimumin T, sincea, is always the more dominant coeffi
(V, — vy)(2v, + Vz)H cient. From a_pract|cal wevypomt, these observations may b
encapsulated into the following protocol: Tabulate all values of
n=1,2,... [46] t/7 th", t7™ andtfy" in a given mixing time range. In general,
at{i™ corresponds to a local maximum in thg. If the t{i*also
Since the condition in Eq. [45] requires one vicinal coupling tbappens to be coincident with or appears close t§*a the
be almost four times the other, it occurs only for classigituation corresponds to a global maximum. On the other hanc
trans-gauche conformations. THE,, and T,, curves meet at if t{1*/t{i" lies close to &3", a global minimum results.
1/D, which is aT,, local minimum sandwiched between the Whenv, + v, > |g| (Figs. 3c and 3d), the denominator
two symmetricall;, maxima. Ifd deviates slightly from zero of a, (6D?) becomes large and, therefome, is small. The
as shown in Fig. 2dyW, = 12,v, = 3.5,d/D = 0.02), the T, profile is, therefore, almost completely dominatedfby
T,, profile becomes skewed, but the overall profile remaiddaxima and minima inl,, appear at mixing times close to

similar. tiy. = (2n — 1)/(d + D). The f; maxima are broad,
typically spanning 10 ms. As a result, differences betweer

1
T = D [an + arcco{

ANALYSIS OF TOPOLOGIES WITHOUT the value ofT, att{z* and the actual ;*is very small (Figs.
COMPACT SOLUTIONS 3c and 3d) and largely insensitive to the relative magnitude:
of v, andv,.

For topologies which do not belong to either of the above Combining the compact solutions with the “rules” developed
two categories, it is still possible to predict the profilelgfvs in this section, mixing times corresponding to transfer function
T With reasonable accuracy, over the vicinal coupling constamixima/minima may be obtained largely from a knowledge of
range 0= {v,, v,} = 15 Hz. Figures 3a—3ghowT,, andT,; d andD alone.
for two topologies for whictv, # v, and neither is/; + v, ~
|gl. In each of the plots, th&,, f,, f;, andQ, = f, + f; are CONCLUSIONS
shown as a function of mixing time. It is easily seen that the
sum @) of the fastest frequency component;) and the  The isotropic mixing transfer functions in three-spin sys-
largest amplitude component) reproduce the overall profile tems are obtained using an alternative approach to that c
of Ty, very closely. While it is easily demonstrated from th&laseret al. (18) and analyzed these functions in order to
definitions ofd and D thatf, is the most rapidly oscillating extract their information content in a simple manner. For
component for allv,, v,, andg, a; is not always the largest certain spin topologies typical of amino acids, the intrinsi-
coefficient. However, numerical calculations show thatis cally complex functions reduce to compact forms which are
indeed the largest coefficient in the range=({v,, v,} = 15. easy to use for predicting transfer maxima/minima. An

Although a value ofy = —15 Hz has been used in Fig. 3, theénteresting result occurs when + v, ~ |g|, wherein both
validity of the result has been verified over the range<l®y| the transfer functiond,, and T,; peak at the same mixing
< 16. time with the same value, regardless of the relative magni

Essentially, a knowledge of the extremd ptat multiples of tudes ofv, andv,. For other topologies where compactifi
1/D) andf; (at multiples of 2/@ + D)) is a good indicator of cation is not possible, in the normally observed coupling
the profile of the overall function. Two different situations magonstant ranges of & {v,, v,} = 15 Hz and—16 =g =
be considered, as follows. —12, an analysis of the component functions of theg

v, + v, < |g|. Each local maximum or minimum of,, reveals that only one or two components contribute signif-
usually coincides with corresponding extremaf oflf v; < icantly to the overall profile of the transfer function. This
v, (Fig. 3a), a, is positive (Eqg. [35]) and, thereford, leads to simple rules of the thumb for reasonably accurat:

maxima occur at{i* = n/D,n=1, 2, ... . Ifv, > v,, a; prediction of mixing times corresponding to local and global
is negative and, thereforg, maxima appear &tfi* = (2n — transfer maxima/minima and thereby facilitates mixing time
1)/(2D), n = 1, 2,.... Forvy, < v,/2, a; is obviously optimization in experiments. The transfer functions pre-

negative (Eq. [37]). Otherwisea; becomes positive only sented in this paper corespond to the ideal isotropic mixing
when ¢, — 2v,) > (|]g| + D). Both |g| andD are large case, where effect relaxation is neglected, which often lead
quantities and, therefore, this condition requirgsto be to an additional damping of the experimental transfer func-
abnormally large, which is never true for any realistic valuda#on. In practice, relaxation effects are more severe at longe
of proton coupling constants. As a resudt, may be con mixing times and need to be accounted for. However, fot
sidered negative and, therefofg,maxima appear aty* = small to medium-size molecules in which proton TOCSY
(2n — 1)/(d + D). experiments are most relevant, these expressions are like

“Global” maxima inT,, arise wherf, andf; are maximally to be applicable up to 100 ms of mixing time, depending on
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FIG. 3. Mixing time dependence of transfer functions and their various components at different valugarafv,: (a) v, = 3.0 Hz andv, = 7.0
Hz, (b) v; = 7.0 Hz andv, = 3.0 Hz, (c)v, = 6.0 Hz andv, = 11.0 Hz, (d)v, = 11.0 Hz andv, = 6.0 Hz. The value ofj is always taken as

—15 Hz.

the molecular weight. While this analysis has been restrictezantly (12 for 4-spin systems), about 6 of 12 harmonic
to the smallest of multispin systems, investigation of isderms contribute substantially to the overal], (19). This
tropic mixing in four-spin systems has indicated that evemolds out promise for similar analyses of more complex spin

when the number of component functions increases signsystems.
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