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Isotropic mixing transfer functions (Tkl) in three-spin systems
typical of amino acids have been analyzed in order to develop
simple rules for predicting transfer maxima/minima. For certain
topologies, the intrinsically complex expressions describing the
transfer functions reduce to compact forms which are easy to
interpret and analyze. For other topologies where compactification
is not possible, an analysis of the component functions of the Tkl

reveals that only one or two components contribute significantly to
the overall profile of the transfer function. As a result, simple rules
of the thumb may be devised for reasonably accurate prediction of
mixing times corresponding to local and global transfer maxima/
minima, thereby facilitating mixing time optimization in TOCSY
experiments. © 2000 Academic Press

INTRODUCTION

The description of isotropic mixing (1) in multispin system
is essential for understanding and optimizing TOCSY (1, 2)

xperiments. Unlike pulsed-free-precession experiments,
ytical descriptions of multispin coupling topologies are p
ible only for very special situations (5–10) and require nu

merical simulations in most cases (11–17). Excellent analysi
f isotropic mixing has appeared in Refs. (3) and (4).
Recently, Glaser and co-workers have derived analytica

ressions for isotropic mixing transfer functionsTkl in a genera
three-spin (AMX) system (18). It is obvious from the results tha
xcept for very special cases, theTkl are complicated sinusoid

unctions of all relevant scalar couplings and the mixing tim
The rather complex nature of the transfer functions ten

educe the utility of analytical expressions for predicting tr
er maxima/minima, which is necessary for optimizing
ixing time in TOCSY experiments. Also, the complexity

he functions reveals very little insight into the dynamics
agnetization transfer in isotropic mixing. Any possibility

educing these expressions to simpler forms or extracting
key ingredients” to enhance their utility is always desirab

In this paper, first we derive expressions for transfer func
n a general three-spin system using the relatively simple Liou
pace framework, which is usually found in amino acid
ystems. Then, we consider topologies for which the expres

1 Present address: Department of Biochemistry, University of Califo
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reduce to a compact form. As discussed below, these situ
correspond to commonly observed scenarios in amino acid
these topologies, transfer maxima and corresponding m
times can be predicted precisely. We then go on to show tha
for other three-spin topologies, which donot belong to suc
“compact” categories, considerable simplication is possible
analyze thecomponentfunctions of a givenTkl, rather than th
function as a whole. As a result, mixing times correspondin
transfer maxima/minima (in other words, the mixing timeprofile)
can still be predicted with a reasonable degree of accuracy,
is important from a practical standpoint.

ISOTROPIC MIXING IN A THREE-SPIN SYSTEM

For an arbitrary spin system {I 1, I 2, I 3}, the isotropic
Hamiltonian is

H 5 2p O
k,l

3

JklI k z I l. [1]

Using the Liouville equation for the density operators, the
time derivative for the expectation value of an operatorA may
be derived as

ṡ 5 2i @H, s# [2]

^ A& 5 Tr~ As! [3]

^Ȧ& 5 2i Tr$A@H, s#%. [4]

Using the property Tr{A[B, C]} 5 Tr{[ A, B]C}, we have

^Ȧ& 5 2i Tr$@A, H#s% [5]

5 2i^@A, H#&. [6]

Using Eq. [6], the complete set of coupled differential eq
tions maybe written down for an appropriaten-dimensiona
operator basisA [ { Ak}, k 5 1, n. An elementAk of this
basis set is transformed by the commutator [Ak, H] into a
linear combination of the basis operators:

@Ak, H# 5 O
l

RklAl. [7],
1090-7807/00 $35.00
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122 SARATA C. SAHU
Therefore, we may write Eq. [6] in matrix form,

dA
dt

5 2iRA . [8]

The isotropic Hamiltonian preserves coherence order.
hree-spin system, the following 15 normalized operatorsI x,
Sx, Qx, 2I ySz, 2I zSy, 2SyQz, 2SzQy, 2I yQz, 2I zQy, 4I xSyQy,
4I xSzQz, 4SxI yQy, 4SxI zQz, 4QxI ySy, and 4QxI zSz represen
an appropriate Liouville subspace. Differential equations
be written to describe the evolution of each of these opera
However, a suitable linear combination of these basis oper
allows the set of 15 coupled differential equations to be p
tioned into two sets of 9 and 6 equations each. The m
equation for the nine-dimensional Liouville subspace is

wherej 12, j 13 and j 23 are the coupling constants between I
I, Q; S, Q, respectively, and

A 5 ^I xSyQy& 1 ^I xSzQz& [10]

B 5 ^SxI yQy& 1 ^SxI zQz& [11]

C 5 ^QxI ySy& 1 ^QxI zSz& [12]

IS 5 ^I ySz& 2 ^I zSy& [13]

SQ5 ^SyQz& 2 ^SzQy& [14]

IQ 5 ^I yQz& 2 ^I zQy&, [15]

hereas the matrix equation for the six-dimensional subspa

d

dt 1
^I x& 2 ^Sx&
^Sx& 2 ^Qx&
^I x& 2 ^Qx&

IS
SQ
IQ

A 2 B
B 2 C
A 2 C

2 5 p1
0 0 0 22j 12

0 0 0 j 12 2
0 0 0 2j 12 2

2j 12 0 0 0
0 2j 23 0 0
0 0 2j 13 0
0 0 0 2j 23 2 j 13 2j 1

0 0 0 2j 23 2 j 13 2j 1

0 0 0 j 23 2 2j 13 j 12

d

dt 1
IS1

SQ1

IQ 1

A2

B2

C2

2 5 p1
0 0
0 0
0 0
j 13 j 12 2j 12

j 23 2j 12 2 j 23 j
2j 23 2 j 13 j 23 j
a

n
rs.
rs
i-
ix

;

is

A2 5 ^I xSyQy& 2 ^I xSzQz& [17]

B2 5 ^SxI yQy& 2 ^SxI zQz& [18]

C2 5 ^QxI ySy& 2 ^QxI zSz& [19]

IS1 5 ^I ySz& 1 ^I zSy& [20]

SQ1 5 ^SyQz& 1 ^SzQy& [21]

IQ 1 5 ^I yQz& 1 ^I zQy&. [22]

Interestingly, both sets of equations are amenable to an
cal solutions using standard methods, such as Laplace
orms or matrix diagonalization. We found the Laplace tra
orm method more easy to implement onMathematicaversion
.2. While the procedure is standard textbook material,

utlined below for completeness. Taking Laplace transfo
n both sides of Eq. [6] we have

s+A 2 A ~0! 5 2iR+A, [23]

+A being the Laplace transform ofA. After rearranging Eq
[23], we have

~sE 1 iR!+A 5 A ~0!, [24]

hereE is the identity operator. DenotingU 5 sE 1 iR, we
ave

2j 13 0 0 0
23 2j 13 0 0 0
3 22j 13 0 0 0

0 0 2j 23 j 13

0 2j 12 0 j 13

0 j 12 j 23 0
j 13 j 23 2 2j 12 0 0 0
j 13 j 12 2 2j 23 0 0 0

2j 13 2j 12 2 j 23 0 0 0

2 z 1
^I x& 2 ^Sx&
^Sx& 2 ^Qx&
^I x& 2 ^Qx&

IS
SQ
IQ

A 2 B
B 2 C
A 2 C

2 , [9]

2j 13 2j 23 j 23 1 j 13

2j 12 j 12 1 j 23 2j 23

j 12 1 j 13 2j 12 2j 13

j 13 0 0 0
0 0 0
0 0 0

2 z 1
IS1

SQ1

IQ 1

A2

B2

C2

2 , [16]
j 23

2j
j 2

0
0
0

2 2

2 2
2

0
0
0
2

12

13
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123ISOTROPIC MIXING MAGNETIZATION TRANSFER PROFILES
+A 5 U 21A ~0! [25]

and, consequently,

A ~t! 5 VA ~0! [26]

V 5 + 21U 21. [27]

Here we present results obtained for the usually encoun
initial condition where the magnetization resides in-phas
one of the spins. This results in only the nine-dimensi
subspace being relevant for the solutions. The expressio
transfer functions pertaining to in-phase and two-spin
phase operators are listed in Tables 1 and 2, respectively.
accepted conventions, we use the symbolTkl to denote thek3

transfer function which, in the Liouville space formalis
orresponds to the value of^ Al&(t) for the initial condition

^ Ak&(0) 5 1, others zero. From the expression forTkl, other
transfer functions (e.g.,Tlm) may be obtained by simple pe-

utation of the spin identities.
The three-spin topology found typically in biomolecu

onsists of two vicinal and one geminal coupling (Fig.
sually anHa–Hb1–Hb2 system in Phe, Tyr, Trp, His, As

Asn, Cys, and Ser. In this work, we refer to the vicinalJab1,2 as
v 1 ( j 12) and v 2 ( j 13), respectively, and the geminalJb1b2

coupling asg ( j 23), with { v 1, v 2} # ugu. The validity of the
conclusions made in this paper has been tested for 0# { v1,
v2} # 15 Hz and216 , g , 212, which are the usual

bserved ranges of these couplings in amino acids (20–23).
or the simulations shown in the paper, we have assum
alue of215 Hz forg. Finally, we have concentrated only
cross-peak intensities,” i.e.,Tkl, k Þ l .

ANALYSIS OF TOPOLOGIES YIELDING
COMPACT SOLUTIONS

In general, the total transfer functionTkl(tm) for an n-spin
system is given by (4)

Tkl~tm! 5 a0 1 O
j51

N

fj~tm! [28]

TAB
Expressions of Transfer Functions for Isotr

^T&11 5
1

3
1

~ j 12 1 2j 23 1 j 13!
2

18D 2 1
~ j 13 2 j 12!

2

6D 2 cosl1t 1
2D 2 j 12 1 2j 23

9D

^T&12 5
1

3
1

~ j 12 1 j 23 2 2j 13! z ~ j 12 2 2j 23 1 j 13!

18D 2 1
~ j 12 2 j 23! z ~ j 13 2 j

6D 2

^T&13 5
1

3
1

~ j 12 1 2j 23 1 j 13! z ~22j 12 1 j 23 1 j 13!

18D 2 1
~ j 23 2 j 13! z ~j 13 2

6D 2

Note. d5 ( j 12 1 j 23 1 j 13); D 5 ( j 12
2 1 j 23

2 1 j 13
2 2 ( j 12 j 23 1 j 23 j 13
ed
n

al
for
i-
ing

,

a

f j~tm! 5 aj z cos~2pn jtm!, [29]

whereN 5 1 and 3 for two- and three-spin systems, res
tively, andn j are derived from differences of eigenvalues oH.
The numberN grows rapidly with the number of spins in t
network (e.g.,N 5 12 for a four-spin system) (19).

SinceTkl is a superposition of several trigonometric fu-
tions, it is not trivial to calculate maxima and minima eve
all the aj andn j are known. However, for certain spin top-

gies, the individual functionsf j seldom contribute equally
Tkl, which then becomes far more tractable for analysis.

From Eq. [29], the vicinal transfer functionT12 for a three
spin system may be written as

T12~tm! 5 a0 1 f1~tm! 1 f2~tm! 1 f3~tm!. [30]

ased on the results of Table 1 and withv1,2 as defined abov
the coefficientsaj and functionsf j are

a0 5 1/3 1 ~v1 1 v2 2 2g!~v1 2 2v2 1 g!/~18D 2! [31]

f1 5 a1 z cos~2pDtm! [32]

f2 5 a2 z cos@p~d 2 D!tm# [33]

f3 5 a3 z cos@p~d 1 D!tm# [34]

a1 5
~v1 2 v2!~ g 2 v1!

6D 2 [35]

a2 5
~2v1 2 v2 2 g 2 D!

9D
[36]

a3 5
2~2v1 2 v2 2 g 1 D!

9D
[37]

d 5 g 1 v1 1 v2 [38]

D 5 @ g2 1 v 1
2 1 v 2

2 2 ~ gv1 1 gv2 1 v1v2!#
1/ 2. [39]

13 andT23 are obtained easily from Eqs. [31]–[39], by app-
priately permuting the identities of the spins. Two situat
whereT takes a simple form are the following.

1
ic Mixing in a General Three-Spin System

j 13
cosl2t 1

2D 1 j 12 2 2j 23 1 j 13

9D
cosl3t

cosl1t 1
2j 12 2 j 23 2 j 13 2 D

9D
cosl2t 1

22j 12 1 j 23 1 j 13 2 D

9D
cosl3t

cosl1t 1
2j 12 2 j 23 1 2j 13 2 D

9D
cosl2t 1

j 12 1 j 23 2 2j 13 2 D

9D
cosl3t

12 j 13))
1/ 2; l 1 5 2pD; l 2 5 p(d 2 D); l 3 5 p(d 1 D).
LE
op

2

12!

j 12!

1 j
12
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(a) v1 5 v2 5 v

This has been dealt with in detail by Glaser (9) and corre
sponds to gauche–gauche or rotationally averaged conf
tions in amino acid side chains.T12 5 T13 takes the form

T12 5 T13 5
2

9
@1 2 2 cos~3pvt!#. [40]

s noted by Glaser (9), the transfer is independent ofg.
ransfer maxima (T12

max 5 T13
max 5 33%) appear at odd multipl

of t 5 1/(3v).

(b) d ; 0, or d/D ! 1, i.e., g ' 2(v 1 1 v2)

This is not an uncommon situation in amino acids, typ
examples being thetrans-gauche conformation (v 1 5 3, v 2 5

TAB
Expressions for Transfer Coefficients for T

for Isotropic Mixing in a

^2I ySz& 5 2^2I zSy& 5
~~ j 12 2 j 13!sin l1 1 ~2j 12 1 j 23 1 D!sin l2 1 ~ j

6D

^2SyQz& 5 2^2SzQy& 5
~ j 12 2 j 13! z ~sin l1 1 sin l2 2 sin l3!

6D

^2I yQz& 5 2^2I zQy& 5
~~ j 13 2 j 12!sin l1 1 ~ j 23 2 j 13 1 D!sin l2 1 ~2j

6D

^I xSzQz& 5 ^I xSyQy& 5 2
~ j 12 2 2j 23 1 j 13!

2

18D 2 2
~ j 13 2 j 12!

2

6D 2 cosl1 1
~2D

^SxI zQz& 5 ^SxI yQy&

5
~ j 12 2 2j 23 1 j 13! z ~2j 12 2 j 23 1 2j 13!

18D 2 1
~ j 23 2 j 12! z ~ j 13 2 j

6D 2

^QxI zSz& 5 ^QxI ySy&

5
~2j 12 2 j 23 2 j 13! z ~ j 12 2 2j 23 1 j 13!

18D 2 1
~ j 12 2 j 13! z ~j 23 2 j 13!

6D 2

Note. d, D, l 1, l 2, andl3 are as defined for Table 1.

FIG. 1. A general three-spin system typically seen in biomolecules.
v andv are vicinal andg is the geminal coupling constant.
1 2
a-

l

12, g 5 215) or (v 1 5 6, v 2 5 9, g 5 215) (20).
Considering the situation whered is exactly zero, the expre
sions forT12 andT13 become

T12 5
1

3
2

v2~v1 1 v2!

2D 2 1
~2v1 1 v2!~v2 2 v1!

6D 2

3 cos 2pDt 2
2

9
cospDt [41]

T13 5
1

3
2

v1~v2 1 v1!

2D 2 2
~2v2 1 v1!~v1 2 v2!

6D 2

3 cos 2pDt 2
2

9
cospDt [42]

D 5 @3~v 1
2 1 v 2

2 1 v1v2!#
1/ 2. [43]

By setting the time derivatives to zero, it is easily shown
for z 5 (v 1/v 2) , (1 1 =3), extrema correspond to

sin pDt m
max 5 0 z 5 v1/v2 , ~1 1 Î3!. [44]

The interesting point to note here is that for bothT12 andT13, peak
maxima or in some cases local minima) appear at the
ixing time (1/D), with identical efficiencies of 44.4%, regardl

of the relative magnitudes ofv1 andv2. As a result, both of th
cross peaks can be maximized at the same mixing time.T23 also
has the same value (44.4%) att 5 1/D, although it does no
orrespond to a maximum. This is illustrated in Fig. 2a, w
hows the three transfer functions, assumingv1 5 9.0 andv2 5

6.0 Hz. T , associated with the larger couplingv , builds up

2
sfer from Ix 3 Different Antiphase Terms
neral Three-Spin System

j 23 1 D!sin l3!

j 13 1 D!sin l3!

j 12 1 2j 23 2 j 13!

18D
cosl2 1

~2D 1 j 12 2 2j 23 1 j 13!

18D
cosl3

cosl1 1
~2j 12 2 j 23 2 j 13 2 D!

18D
cosl2 1

~22j 12 1 j 23 1 j 13 2 D!

18D
cosl3

sl1 1
~2j 12 2 j 23 1 2j 13 2 D!

18D
cosl2 1

~ j 12 1 j 23 2 2j 13 2 D!

18D
cosl3

e

LE
ran
Ge

12 2

23 1

2

12!

co
12 1
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125ISOTROPIC MIXING MAGNETIZATION TRANSFER PROFILES
rapidly in the beginning, but the slower functionT13 catches u
steeply in the vicinity oft 5 1/D. In situations whered Þ 0 but

! D, the maxima ofT12 andT13 are marginally offset from eac
ther, but the point of intersection lies very close to the la
maller of the two peaks, as shown in Fig. 2b (v1 5 9.0,v2 5 4.0,

d/D 5 20.09). In addition,T23 develops multiple maxima, whic
exceed that ofT andT .

FIG. 2. Mixing time dependence of transfer functions at different val
c) v1 5 12.0 Hz andv2 5 3.0 Hz, (d)v1 5 12.0 Hz andv2 5 3.5 Hz. The
12 13
r/

For z $ (1 1 =3), the condition for extrema is given

cospDt m
max 5

v 1
2 1 v 2

2 1 v1v2

~v2 2 v1!~2v1 1 v2!
z $ ~1 1 Î3!. [45]

n example of the mixing time profile of a topology in t

of1 andv2: (a) v1 5 9.0 Hz andv2 5 6.0 Hz, (b)v1 5 9.0 Hz andv2 5 4.0 Hz,
lue ofg is 215 Hz in all cases.
uesv
va
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126 SARATA C. SAHU
category (v1 5 12, v2 5 3) is shown in Fig. 2c.T12 displays
multiple maxima at

t m
max 5

1

pD F2np 6 arccosH v 1
2 1 v 2

2 1 v1v2

~v2 2 v1!~2v1 1 v2!
JG

n 5 1, 2, . . . [46]

Since the condition in Eq. [45] requires one vicinal couplin
be almost four times the other, it occurs only for cla
trans-gauche conformations. TheT12 and T13 curves meet a
1/D, which is aT12 local minimum sandwiched between
two symmetricalT12 maxima. Ifd deviates slightly from zer
as shown in Fig. 2d (v 1 5 12, v 2 5 3.5, d/D 5 0.02), the

12 profile becomes skewed, but the overall profile rem
similar.

ANALYSIS OF TOPOLOGIES WITHOUT
COMPACT SOLUTIONS

For topologies which do not belong to either of the ab
two categories, it is still possible to predict the profile ofTkl vs
tm with reasonable accuracy, over the vicinal coupling con
range 0# { v1, v2} # 15 Hz. Figures 3a–3dshowT12 andT13

for two topologies for whichv1 Þ v2 and neither isv 1 1 v 2 ;
ugu. In each of the plots, theTkl, f 1, f 3, andQkl 5 f 1 1 f 3 are
shown as a function of mixing time. It is easily seen that
sum (Qkl) of the fastest frequency component (f 1) and the
largest amplitude component (f 3) reproduce the overall profi
of Tkl very closely. While it is easily demonstrated from

efinitions ofd and D that f 1 is the most rapidly oscillatin
component for allv1, v2, andg, a3 is not always the large
coefficient. However, numerical calculations show thata3 is
indeed the largest coefficient in the range 0# { v1, v2} # 15.
Although a value ofg 5 215 Hz has been used in Fig. 3,
validity of the result has been verified over the range 12, ugu
, 16.

Essentially, a knowledge of the extrema off 1 (at multiples o
1/D) andf 3 (at multiples of 2/(d 1 D)) is a good indicator o
the profile of the overall function. Two different situations m
be considered, as follows.

v 1 1 v 2 , ugu. Each local maximum or minimum ofTkl

usually coincides with corresponding extrema off 1. If v1 ,
v2 (Fig. 3a), a1 is positive (Eq. [35]) and, therefore,f 1

maxima occur att f 1
max 5 n/D, n 5 1, 2, . . . . If v 1 . v 2, a1

is negative and, therefore,f 1 maxima appear att f 1
max 5 (2n 2

1)/(2D), n 5 1, 2, . . . . Forv 1 , v 2/ 2, a3 is obviously
negative (Eq. [37]). Otherwise,a3 becomes positive on
when (v 2 2 2v 1) . (ugu 1 D). Both ugu and D are large

uantities and, therefore, this condition requiresv2 to be
abnormally large, which is never true for any realistic va
of proton coupling constants. As a result,a3 may be con-
sidered negative and, therefore,f 3 maxima appear att f 3

max 5
(2n 2 1)/(d 1 D).

“Global” maxima inT arise whenf andf are maximally
kl 1 3
o
c

s

e

nt

e

s

in-phase, i.e., when maxima off 1 coincide with that off 3.
When f 1 and f 3 are anti-phase, i.e., anf 1 maximum coincide
with an f 3 minimum, the situation corresponds to a glo
minimumin Tkl, sincea3 is always the more dominant coe-
cient. From a practical viewpoint, these observations ma
encapsulated into the following protocol: Tabulate all value
t f 1

max, t f 1
min, t f 3

max, andt f 3
min in a given mixing time range. In gener

a t f 1
max corresponds to a local maximum in theTkl. If the t f 1

max also
happens to be coincident with or appears close to at f 3

max, the
situation corresponds to a global maximum. On the other h
if t f 1

max/t f 1
min lies close to at f 3

min, a global minimum results.
When v 1 1 v 2 . ugu (Figs. 3c and 3d), the denomina

f a1 (6D 2) becomes large and, therefore,a1 is small. The
Tkl profile is, therefore, almost completely dominated byf 3.

axima and minima inTkl appear at mixing times close
t f 3

max 5 (2n 2 1)/(d 1 D). The f 3 maxima are broad
typically spanning 10 ms. As a result, differences betw
the value ofTkl at t f 3

max and the actualTkl
max is very small (Figs

3c and 3d) and largely insensitive to the relative magnit
of v1 and v2.

Combining the compact solutions with the “rules” develo
in this section, mixing times corresponding to transfer func
maxima/minima may be obtained largely from a knowledg
d andD alone.

CONCLUSIONS

The isotropic mixing transfer functions in three-spin s
tems are obtained using an alternative approach to th
Glaseret al. (18) and analyzed these functions in orde
extract their information content in a simple manner.
certain spin topologies typical of amino acids, the intri
cally complex functions reduce to compact forms which
easy to use for predicting transfer maxima/minima.
interesting result occurs whenv 1 1 v 2 ; ugu, wherein both
he transfer functionsT12 and T13 peak at the same mixin

time with the same value, regardless of the relative ma
tudes ofv1 and v2. For other topologies where compact-
ation is not possible, in the normally observed coup
onstant ranges of 0# { v1, v2} # 15 Hz and216 # g #

212, an analysis of the component functions of theTkl

reveals that only one or two components contribute sig
icantly to the overall profile of the transfer function. T
leads to simple rules of the thumb for reasonably accu
prediction of mixing times corresponding to local and glo
transfer maxima/minima and thereby facilitates mixing t
optimization in experiments. The transfer functions p
sented in this paper corespond to the ideal isotropic mi
case, where effect relaxation is neglected, which often l
to an additional damping of the experimental transfer fu
tion. In practice, relaxation effects are more severe at lo
mixing times and need to be accounted for. However
small to medium-size molecules in which proton TOC
experiments are most relevant, these expressions are
to be applicable up to 100 ms of mixing time, depending
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127ISOTROPIC MIXING MAGNETIZATION TRANSFER PROFILES
the molecular weight. While this analysis has been restr
to the smallest of multispin systems, investigation of
tropic mixing in four-spin systems has indicated that e
when the number of component functions increases si

FIG. 3. Mixing time dependence of transfer functions and their va
z, (b) v1 5 7.0 Hz andv2 5 3.0 Hz, (c) v1 5 6.0 Hz andv2 5 11.0

215 Hz.
d
-
n
if-

icantly (12 for 4-spin systems), about 6 of 12 harmo
terms contribute substantially to the overallTkl (19). This
holds out promise for similar analyses of more complex
systems.

us components at different values ofv1 and v2: (a) v1 5 3.0 Hz andv2 5 7.0
, (d)v1 5 11.0 Hz andv2 5 6.0 Hz. The value ofg is always taken a
rio
Hz
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